Как выглядит полет с точки зрения физики
Чтобы взлететь, аппарату нужно компенсировать силу тяжести за счет подъемной и противостоять силе сопротивления воздуха тягой
Невозможный, согласно математическим расчетам Ньюкома, полет современных лайнеров можно объяснить простым опытом. Для него понадобятся 2 одинаковые банки, пара похожих мух и весы. На одну чашу ставят емкость с насекомым, которое неподвижно сидит на дне. На другой оказывается банка с постоянно летающей мухой.
По логике, первая чаша должна перевесить фактически пустую вторую емкость. Но на деле обе части мерила окажутся в балансе. Летающая муха поднимается в воздух за счет направленного вниз потока импульса, добавляя банке несколько граммов и уравновешивая силу тяжести.
В случае с самолетом принцип в общих чертах похож, только организовано все гораздо сложнее. Летят аппараты благодаря подъемной силе (ПС), возникающей при взаимодействии потоков воздуха и крыла с аэродинамической формой. Последние располагаются под углом. Острием они рассекают поток на направленный вниз и «набегающий», из-за чего под крылом образуется область высокого давления, а над ним – низкого. Разница в итоге и порождает подъемную силу.
Но чтобы взлететь, аппарату нужно компенсировать не только силу тяжести за счет подъемной, но и противостоять силе сопротивления воздуха тягой. В отличие от насекомых, судно не способно набрать нужные скорость и высоту с помощью взмахов крылышками. «Стать на воздух» самолет сможет на определенной скорости, набрать которую помогают двигатели.
Наглядное объяснение того, как и почему летают самолеты. Какую роль в передвижении по воздуху играют крыло, двигатель и другие части конструкции.
Какие фотографии размещать на сайтах знакомств, чтобы получить максимум лайков?
Скорость взлета и движения на эшелоне
Скорость (V) передвижения у лайнеров непостоянна – на подъеме необходима одна, а в полете другая.
- Взлет фактически начинается с момента движения судна по полосе. Аппарат разгоняется, набирает необходимый для отрыва от полотна темп и только тогда, благодаря увеличению подъемной силы, взмывает вверх. Необходимая для отрыва V прописана в руководстве к каждой модели и общих инструкциях. Моторы в этот момент работают на полную, дают огромную нагрузку на машину, отчего процесс считается одним из самых сложных и опасных.
- Чтобы зафиксироваться в пространстве и занять выделенный эшелон, необходимо достичь уже другой скорости. Полет в горизонтальной плоскости возможен только в том случае, если ПС компенсирует притяжение Земли.
Показатели скорости, с которой летательный аппарат способен подняться в воздух и задержаться там на определенное время, назвать трудно. Зависят они от характеристик конкретной машины и окружающих условий. У небольшого одномоторного V логично будет ниже, чем у гигантского пассажирского судна – чем крупнее аппарат, тем быстрее ему приходится двигаться.
Для «Боинга» 747-300 это примерно 250 километров в час, если плотность воздуха составит 1,2 килограмма на кубический метр. У Cessna 172 – примерно 100. Як-40 отрывается от полотна на 180 км/ч, Ту154М – на 210. Для Ил 96 показатель в среднем достигает 250, а у Airbus A380 – 268.
Из независимых от модели аппарата условий при определении числа опираются на:
- направление и силу ветра – встречный помогает, подталкивая нос вверх
- наличие осадков и влажность воздуха – могут осложнять или способствовать разгону
- человеческий фактор – после оценки всех параметров решение принимает пилот
Скорость, характерную для эшелона, в технических характеристиках обозначают как «крейсерская» – это 80% от максимальных возможностей машины
Скорость на самом эшелоне также зависит непосредственно от модели судна. В технических характеристиках ее обозначают как «крейсерская» – это 80% от максимальных возможностей машины. Первый пассажирский «Илья Муромец» разгонялся всего до 105 километров в час. Сейчас же число среднем в 7 раз больше.
Если летите на Airbus A220, показатель находится на уровне 870 км/ч. А310 передвигается обычно со скоростью 860 километров в час, А320 – 840, А330 – 871, А340-500 – 881, А350 – 903, а гигант А380 – 900. У «Боингов» примерно так же. Boeing 717 летает на крейсерской в 810 километров в час. Массовый 737 – на 817-852 в зависимости от поколения, дальнемагистральный 747 – 950, 757 – на 850 км/ч, первый трансатлантический 767 – 851, Triple Seven – 905, а реактивный пассажирский 787 – 902. По слухам, компания занимается разработкой лайнера для гражданской авиации, который будет доставлять людей из одной точки в другую на V=5000. Но пока в топ самых быстрых в мире входят исключительно военные:
- американский сверхзвуковой F-4 Phantom II пусть и уступил место более современным, но все еще входит в десятку с показателем в 2370 километров в час
- одномоторный истребитель Convair F-106 Delta Dart с 2450 км/ч
- боевой МиГ-31 – 2993
- экспериментальный Е-152, чья конструкция легла в основу МиГ-25 – 3030
- прототип XB-70 Valkyrie – 3 308
- исследовательский Bell X-2 Starbuster – 3 370
- МиГ-25 способен достичь 3492, но остановиться на этой отметке и не повредить двигатель невозможно
- SR-71 Blackbird – 3540
- мировой лидер X-15 с ракетным двигателем – 7 274
Возможно, и гражданские суда когда-нибудь смогут достигнуть этих показателей. Но точно не ближайшее время, пока главным фактором в вопросе остается безопасность пассажиров.
Вы знали, что никому нет дела до вас??? - читайте далее в телеграмм канале с ценными советами для практичных людей
4 детали авиалайнера, от которых зависят летные качества
Летающие машины отличаются от обычных очень сложными конструкциями, предусматривающими каждую мелочь. И кроме очевидных деталей, на возможности и характеристики передвижения влияют и другие части – всего собрали 4 основных.
1. Крыло. Если при отказе двигателя можно долететь до ближайшего аэродрома на втором, а при неполадках сразу в двух – приземлиться с опытом пилота, без крыла от пункта отправления не отдалишься. Не будет его – не будет необходимой подъемной силы. В единственном числе о крыле говорят не случайно. Вопреки распространенному мнению, оно у самолета одно. Этим понятием обозначают всю плоскость, расходящуюся в обе стороны от борта.
Поскольку это главная деталь, отвечающая за нахождение в воздухе, ее конструкции уделяется очень много внимания. Форму строят по точным расчетам, выверяют и испытывают. Кроме того, крыло способно выдерживать огромные нагрузки, чтобы не ставить под угрозу главное – безопасность людей.
2. Закрылки и предкрылки. Большее количество времени крыло самолета имеет обтекаемую форму, но на взлете и посадке на нем появляются дополнительные поверхности. Выпускаются закрылки и предкрылки для того, чтобы увеличить площадь и справиться с действующими на аппарат силами во время серьезных нагрузок в начале и конце пути. При приземлении тормозят лайнер, не позволяют ему упасть слишком быстро, а на подъеме помогают удержаться в воздухе.
3. Спойлеры. Появляются на верхней части крыла в моменты, когда требуется уменьшить ПС. Играют роль своеобразного тормоза. Эта и детали из предыдущего пункта представляют собой механизацию, которой пилоты управляют вручную.
4. Двигатель. Винтовые тянут машину за собой, а реактивные «толкают» вперед.
Пусть еще в начале прошлого века в идею создать летающий транспорт мало кто верил, в наши дни самолеты ни у кого не вызывают удивления. Хотя в принципах их передвижения разбираются единицы – конструкции аппаратов, физика полетов кажутся слишком сложными и рождают массу заблуждений. Но рядовому пассажиру знать подобное и не обязательно. Главное, запомнить, что возможности каждой модели лайнеров просчитаны, и повторить судьбу Икара возможно лишь в редких случаях.
Вам понравилось?
Сохранить себе эту страницу: